Multilevel preconditioning and low-rank tensor iteration for space-time simultaneous discretizations of parabolic PDEs

نویسندگان

  • Roman Andreev
  • Christine Tobler
چکیده

This paper addresses the solution of instationary parabolic evolution equations simultaneously in space and time. As a model problem we consider the heat equation posed on the unit cube in Euclidean space of moderately high dimension. An a priori stable minimal residual Petrov-Galerkin variational formulation of the heat equation in space-time results in a generalized least squares problem. This formulation admits a unique, quasi-optimal solution in the natural space-time Hilbert space and serves as a basis for the development of space-time compressive algorithms. The solution of the heat equation is obtained by applying the conjugate gradient method to the normal equations of the generalized least squares problem. Starting from the well-known BPX preconditioner, multilevel space-time preconditioners for the normal equations are derived. The resulting “parabolic BPX preconditioners” render the normal equations well-conditioned uniformly in the discretization level. In order to reduce the complexity of the full space-time problem, all computations are performed in a compressed or sparse format called the hierarchical Tucker format supposing that the input data is available in this format. In order to maintain sparsity, compression of the iterates within the hierarchical Tucker format is performed in each conjugate gradient iteration. Its application to vectors in the hierarchical Tucker format is detailed. Finally, numerical results in up to five spatial dimensions based on the recently developed htucker toolbox for Matlab are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I: Analytic regularity and gpc-approximation

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an apriori error analysis for sparse tensor, space-time discretizations. The problem is reduced to a parametric family of deterministic initial boundary value problems on an infinite dimensional parameterspac...

متن کامل

Multilevel tensor approximation of PDEs with random data

In this paper, we introduce and analyze a new low-rank multilevel strategy for the solution of random diffusion problems. Using a standard stochastic collocation scheme, we first approximate the infinite dimensional random problem by a deterministic parameter-dependent problem on a high-dimensional parameter domain. Given a hierarchy of finite element discretizations for the spatial approximati...

متن کامل

Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs

Recently, the authors introduced a preconditioner for the linear systems that arise from fully implicit Runge-Kutta time stepping schemes applied to parabolic PDEs [9]. The preconditioner was a block Jacobi preconditioner, where each of the blocks were based on standard preconditioners for low-order time discretizations like implicit Euler or Crank-Nicolson. It was proven that the preconditione...

متن کامل

A Posteriori Error Estimates for Nonlinear Problems. L(0, T ;L(Ω))-Error Estimates for Finite Element Discretizations of Parabolic Equations

Using the abstract framework of [10] we analyze a residual a posteriori error estimator for space-time finite element discretizations of parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called θ-scheme, which includes the implicit and explicit Euler methods and the Crank-...

متن کامل

;l(ω))-error Estimates for Finite Element Discretizations of Parabolic Equations

Using the abstract framework of [9] we analyze a residual a posteriori error estimator for space-time finite element discretizations of quasilinear parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called θ-scheme, which includes the implicit and explicit Euler methods and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015